AVR. Учебный Курс. Управляемый вектор прерывания

Бывает такая ситуация, когда надо на один периферийный девайс повесить много разных задач, а он всего один и что то надо с этим делать.

Простой пример — таймер и его прерывание по переполнению.
Мы можем задавать выдержку и по прерыванию делать какие-нибудь операции. Но если в один момент времени мы хотим чтобы таймер по прерванию сделал одну операцию, а потом другую, третью. Да сколько угодно, в зависимости от состояния. А вектор один.

Или, например, USART. Нам запросто может потребоваться, чтобы в зависимости от режима на прерывание по приходу байта выполнялся разный код. В одном режиме — выдача приветствия, в другом посыл матом в баню. В третьем удар в голову. А вектор один.

Конечно, можно добавить в обработчик прерывания switch-case конструкцию и по выбору режима перейти на нужный участок кода, но это довольно громоздко, а самое главное — время перехода будет разное, в зависимости от того в каком порядке будет идти опрос-сравнение switch-case структуры.

То есть в свитче вида:

1
2
3
4
5
6
7
switch(x)
	{
	1: Действие 1
	2: Действие 2
	3: Действие 3
	4: Действие 4
	}

Будет последовательное сравнение х вначале с 1, потом с 2, потом с 3 и так до перебора всех вариантов. А в таком случае реакция на Действие 1 будет быстрей чем реакция на Действие 4. Особо важно это при расчете точных временных интервалов на таймере.

Но есть простое решение этой проблемы — индексный переход. Достаточно перед тем как мы начнем ожидать прерывание предварительно загрузить в переменные (а можно и сразу в индексный регистр Z) направление куда нам надо перенаправить наш вектор и воткнуть в обработчик прерывания индексный переход. И вуаля! Переход будет туда куда нужно, без всякого сравнения вариантов.
(далее…)

Read More »

AVR. Учебный Курс. Оценка загрузки контроллера.

Как оценить загруженность микроконтроллера? С памятью все понятно — размеры занимаемого кода и оперативной памяти показывает компилятор, а что делать с процессорным временем? Конечно, в линейной программе можно взять и посчитать время выполнения каждой процедуры и станет ясно успеет микроконтроллер выполнить все на него повешанное или слажает в каком-нибудь критичном месте.
Куда сложней оценивать время в кооперативной операционной системе реального времени. Тут задачка получается нетривиальной — у нас куча процессов скачут через диспетчер. В ходе программирования задачи навешиваешь одну за другой, как бусинки на нить — каждый процесс обработки чего либо составляет подобную цепочку, а всего их может быть просто тьма. Ядро же у контроллера всего одно, а значит выполнять можно всего одну задачу за раз и если у нас в диспетчере скопится много критичных ко времени процессов (вообще их лучше развешивать на прерывания, но бывает и прерываний на всех не напасешься), то возможно либо переполнение очереди диспетчера, либо превышение времени ожидания, что тоже не праздник.
Самое западло в том, что умозрительно отлаживать такие вещи довольно сложно. Единственный вариант — рисовать временные диаграммы запуска каждой задачи и смотреть где у нас узкие места. Еще можно попробовать в AVR Studio поставить Break Point на переполнение диспетчера, но студия не сэмулирует всю ту прорву периферии, а в пошаговой отладке этого не увидеть — да и момент надо подобрать так, чтобы все навалилось.

В один момент мне пришла в голову одна идея — а почему бы не заставить рисовать временные диаграммы работы задач сам контроллер? Это же просто! Берем и в диспетчере, перед вызовом задачи выставляем бит порта в 1. А когда диспетчер задач опустошается полностью, то есть выполняется переход на Idle — сбрасываем бит в 0. В результате, у нас на выходе будет подобие ШИМ. Если постоянно крутится Idle — будут нули перманентно. Если же проц в поте лица гонит через себя непрерывно код, то будут высокий уровнь сплошняком. А если все прерывисто — что то ШИМообразное. Причем чем больше загрузка процессора тем выше заполнение. Можно поставить интегрирующую RC цепочку и получим аналоговый сигнал. Хоть на стрелочный индикатор заводи :). Сказано — сделано.
(далее…)

Read More »

AVR. Учебный курс. Операционная система. Пример.

Отлично, с теорией работы ОС ознакомил. Устанавливать научил, осталось научить использовать весь этот конвеерно таймерный шухер. Чем я сейчас и займусь. Сразу берем быка за рога и формулируем учебно-боевую программу.
Тестовое задание:
Пусть у нас будет ATMega8, с несколькими кнопками. АЦП и подключеним к компу через UART. На меге будет три светодиода.

  • Девайс должен при включении начинать мигать зеленым диодом, мол работаю.
  • При этом раз в секунду сканировать показания АЦП и если показания ниже порога — Моргать красным диодом.
  • По сигналу с UARТ с целью защиты от ошибок сделать по байту ‘R’ установку флага готовности, а потом, в течении 10ms если не придет байт ‘A’ сбросить флаг готовности и игнорировать все входящие байты кроме ‘R’. Если ‘A’ придет в течении 10мс после ‘R’, то отправить в UART ответ и зажечь белый диод на 1 секунду.

Вот так вот, не сильно сложно. Но мне просто лень делать что либо сложней, а для тестовой задачи сгодится. (далее…)

Read More »

AVR. Учебный курс. Операционная система. Установка

Ядро у нас есть, теперь осталось это все хозяйство запихать на МК. Для этого всего лишь надо рассовать нужные части кода в исходник. Показывать буду на примере ATmega8. Для других МК разница минимальная. Может быть с таймером что нибудь помудрить придется, но не более того.
Например, недавно, вкорячивал ту же схему на ATmega168, так пришлось подправить иницилизацию таймера — регистры там зовутся по другому. Пришлось изменить макрос OUTI — так как многие привычные уже регистры перестали загружаться через комадну OUT — выпали из диапазона, только через LDS/STS ну и, собственно, все хлопоты. Потратил минут 20 на переименование регистров и заработало.
(далее…)

Read More »

AVR. Учебный курс. Операционная система. Таймерная служба

Третья часть марлезонского балета описалова самопальной операционной системы для AVR.

Итак, у нас есть очередь задач и общая логика работы системы. Но одной очереди задач с диспетчером мало. Нужно распределять задачи по времени, задавать интервалы, запускать отложенные задачи. Всем этим будет заниматься служба таймеров.

В чем ее суть ее работы:
Время разбивается на интервалы, скажем, по 1мс. Такой выдержки хватает для большинства задач. Также у нас должна быть очередь программных таймеров, размещенных в ОЗУ. На каждый таймер отводится три байта:
Первый — идентификатор задачи. Два других — выдержка в миллисекундах.

Два байта позволяют организовать выдержку в 65.5 секунд. Конечно, можно сделать и больше, если отвести на временную выдержку три или даже четыре байта, но такие большие временные интервалы пригождаются редко, поэтому проще перехватиться через дополнительную переменную для конкретной задачи, а не нагружать таймерную службу обсчетом дополнительных байт.

Один из свободных аппаратных таймеров программируем на то, чтобы он генерировал прерывание каждые 0.001с

О работе аппаратных таймеров написано в разделе про программирование встроенной периферии. Пока можешь не заморачиваться. Суть лишь в том, что настроенный таймер тикает независимо от главной программы и в заданное время выдает прерывание.

По прерыванию мы берем из очереди таймеров первый байт и сравниваем его с 0xFF, за 0xFF принято неактивное состояние. Если же там не 0xFF, то значит это идентификатор задачи, а таймер активен. Поэтому берем третий байт, декрементируем его, если он стал равен нулю декрементируем второй байт и если оба байта не стали равны нулю переходим к проверке следующего байта. В случае если время истекло, то идентификатор задачи пихается в очередь задач на исполнение. (далее…)

Read More »

AVR. Учебный курс. Операционная система. Диспетчер задач.

В прошлой части возник вопрос организации программы по задачам. Чтобы можно было разбить программу на кучу независимых частей и не заморачиваться на тот счет, что где то у нас будет затык.
Затык, конечно может быть, это все же не вытесняющая многозадачность с защищенным режимом, но разрулить все будет гораздо проще.

Общая диаграмма работы ОС

Что из себя представляет задача
Это практически то же самое, что и процедура, вызываемая командой RCALL с тремя отличиями:

  • Вызывается она не мгновенно, а в порядке очереди.
  • Вызов задачи идет не по ее адресу, а по ее порядковому номеру в таблице переходов.
  • Возврат из нее идет не в то же место откуда вызывали, а в цикл диспетчера задач.

Сама задача представляет собой обычную процедуру, записанную без каких либо замудреностей.
(далее…)

Read More »

AVR. Учебный курс. Операционная система. Введение.

Рано или поздно наступает момент когда сложность алгоритма становится такой, что дальнейшее развитие и усложнение программы превращается в нетривиальную задачу. Очень легко запутаться и тяжело отлаживать эту портянку. Многие бегут от этих сложностей в языки высокого уровня, впрочем это не особо спасает — разница минимальна на самом деле и проще не становится.
Самое верное решение в данном случае — внедрение в проект операционной системы. Которая бы предоставляла API для решения задач, а также обеспечивала порядок работы всей системы.

В результате было написано микроядро. Камрад Serg2x2 подглядел концепцию в прошивке сотового телефона Motorola и портировал на микроконтроллер АТ89С2051, после ее перенесли на AVR, а я привел все в библиотечный и структурированный вид, обвязал все удобными макросами, а также подробно описал и задокументировал. Так что теперь интеграция ядра операционки в проект под микроконтроллер AVR занимает буквально пару минут работы Copy-Paste.

Ядро обеспечивает очередь задач (пока без приоритетов, но это в планах) и службу таймеров. Многозадачность кооперативная, что накладывает соответствующие ограничения на стиль написания. Фактически, каждую процедуру мы пишем как прерывание, максимально коротко и быстро, все задержки вешая на службу таймеров.

Параметры и системные требования микроядра:

  • Занимаемый обьем в Flash — 500 байт, при желании можно ужать до 400 байт, выкинув ненужные функции.
  • Рекомендуемый объем RAM — не менее 20 байт+стек, впрочем, можно еще ужать если нагрузка небольшая.
  • Крайне желательная поддержка команд STS и LDS, можно и без них, но неудобно. Впрочем, макросы решают.

(далее…)

Read More »

AVR. Учебный курс. Скелет программы

При написании прошивки надо очень внимательно подходить к процессу организации архитектуры будущей программы. Программа должна быть быстрой, не допускать задержек главного цикла и легко расширяться. Оптимально использовать аппаратные ресурсы и стараться выжать максимум возможного из имеющихся ресурсов.

Вообще, архитектура программ это отдельная тема и ближе к концу курса, в его Сишной части я подробней рассказываю о разных типах организации прошивки. Можешь забежать вперед и поглядеть, что да как.

В ассемблерной же части, я расскажу о одном из самых простых вариантов — флаговом автомате, а позже, когда ты уже будешь вовсю ориентироваться в моем коде, дам пример на основе конвейерного диспетчера, с подробным описанием его работы.

Суперцикл
Все программы на микроконтроллерах обычно зацикленные. Т.е. у нас есть какой то главный цикл, который вращается непрерывно.

Структура же программы при этом следующая:

  • Макросы и макроопредения
  • Сегмент ОЗУ
  • Точка входа — ORG 0000
  • Таблица векторов — и вектора, ведущие в секцию обработчиков прерываний
  • Обработчики прерываний — тела обработчиков, возврат отсюда только по RETI
  • Инициализация памяти — а вот уже отсюда начинается активная часть программы
  • Инициализация стека
  • Инициализация внутренней периферии — программирование и запуск в работу всяких таймеров, интерфейсов, выставление портов ввода-вывода в нужные уровни. Разрешение прерываний.
  • Инициализация внешней периферии — инициализация дисплеев, внешней памяти, разных аппаратных примочек, что подключены к микроконтроллеру извне.
  • Запуск фоновых процессов — процессы работающие непрерывно, вне зависимости от условий. Такие как сканирование клавиатуры, обновление экрана и так далее.
  • Главный цикл — тут уже идет вся управляющая логика программы.
  • Сегмент ЕЕПРОМ

(далее…)

Read More »

AVR. Учебный курс. Стартовая инициализация

Инициализация памяти
Мало кто подозревает о том, что при включении в оперативке далеко не всегда все байты равны 0xFF. Они могут, но не обязаны. Равно как и регистры РОН не всегда равны нулю при запуске. Обычно да, все обнулено, но я несколько раз сталкивался со случаями когда после перезапуска и/или включения-выключения питания, микроконтроллер начинал творить не пойми что. Особнно часто возникает когда питание выключаешь, а потом, спустя некоторое время, пара минут, не больше, включаешь. А всему виной остаточные значения в регистрах.

Итак, возьмите себе за правило после каждого включения, в разделе инициализации, еще даже до инициализации стека, делать зануление памяти и очистку всех регистров. Разумеется делается это все в цикле. Вот примерный вариант кода:

1
2
3
4
5
6
7
8
9
10
11
12
RAM_Flush:	LDI	ZL,Low(SRAM_START)	; Адрес начала ОЗУ в индекс
		LDI	ZH,High(SRAM_START)
		CLR	R16			; Очищаем R16
Flush:		ST 	Z+,R16			; Сохраняем 0 в ячейку памяти
		CPI	ZH,High(RAMEND+1)	; Достигли конца оперативки?
		BRNE	Flush			; Нет? Крутимся дальше!
 
		CPI	ZL,Low(RAMEND+1)	; А младший байт достиг конца?
		BRNE	Flush
 
		CLR	ZL			; Очищаем индекс
		CLR	ZH

Поскольку адрес оперативки у нас двубайтный, то мы вначале смотрим, чтобы старший байт совпал с концом, а потом добиваем оставшиеся 255 байт в младшем байте адреса.
Далее убиваем все регистры от первого до последнего. Все, контроллер готов к работе.

1
2
3
4
5
		LDI	ZL, 30		; Адрес самого старшего регистра	
		CLR	ZH		; А тут у нас будет ноль
		DEC	ZL		; Уменьшая адрес
		ST	Z, ZH		; Записываем в регистр 0
		BRNE	PC-2		; Пока не перебрали все не успокоились

За процедурку зануления регистров спасибо Testicq

Либо значения сразу же инициализируются нужными величинами. Но, обычно, я от нуля всегда пляшу. Поэтому зануляю все.

З.Ы.
Кстати, о оперативке. Нашел я недавно планку оперативной памяти на 1килобайт, древнюю как говно мамонта, еще на ферромагнитных кольцах.

Read More »

AVR. Учебный Курс. Типовые конструкции

При написании программ постоянно приходится использовать разные стандартные конструкции вроде циклов, операторов выбора, перехода, сравнения. Всякие там if-then-else или case-switch. В высокоуровневых языках это все уже готово, а на ассемблере приходится изобретать каждый раз заново.
Впрочем, такие вещи пишутся один раз, а дальше просто по наезженной тропинке применяются везде, где потребуется. Заодно и оптимизируются по ходу процесса.

▌Условие if-then-else
Тут проще всего методом последовательной проверки проложить маршрут до нужного блока кода. Приведу пример:

1
2
3
4
5
6
7
8
9
if (А>=B)
 	{
	action_a
	}
else 
	{
	action_b
	}
next_action

Как это проще всего сделать на ассемблере?
(далее…)

Read More »

AVR. Учебный курс. Ветвления на индексных переходах

Таблицы переходов
Вот представь, что нам надо сделать мега CASE, когда на вход валится число от 1 до 100 и нам надо сто вариантов действий.

Как будешь делать? Если лепить сто штук CPI с последующими переходами, то можно дальше убиться головой об стену. У тебя только эти CPI/BR** сожрут половину памяти кристалла. Учитывая, что каждая CPI это два байта, а каждый BR** еще байт. А о том сколько тактов эта шняга будет выполняться я даже не упоминаю.

Делается это все круче. Помнишь я тебе рассказывал в прошлых уроках о таких командах как ICALL и IJMP. Нет, это не новомодная яблочная истерия, а индексный переход. Прикол в том, что переход (или вызов подпрограммы, не важно) осуществляется тут не по метке, а по адресу в регистре Z (о том что Z это пара R30:R31 я пожалуй больше напоминать не буду, пора бы запомнить).
(далее…)

Read More »

AVR. Учебный курс. Флаги и условные переходы

Есть в AVR (да и, пожалуй, во всех остальных процессорах) особый регистр SREG. О нем я несколько раз упоминал в прошлых статьях, но не вдавался в подробности. Чтож, пришло время рассказать, что же это же SREG такой и зачем он нужен.

SREG это регистр состояния ядра. Он так называется Status Register. В этом регистре находится независимых битов — флажков. Которые могут быть либо 1 либо 0, в зависимости от выполненных в прошлом операций.

И вот по тому какие флаги стоят, можно понять что произошло с процессором и что нам дальше делать.

Например, если флаг Z (Zero) выставлен в 1, значит в ходе вычисления предыдущей математической операции в результате образовался ноль.

А если выставлен флаг С (Carry — заем, перенос), то мы из меньшего числа отняли большее, или же прибавили такое число, что результат стал больше 255.

А теперь подробней по каждому флагу.
(далее…)

Read More »

AVR. Учебный курс. Подпрограммы и прерывания

Подпрограммы
Когда один и тот же участок кода часто повторяется, то разумно как то его вынести и использовать многократно. Это дает просто колоссальный выйгрыш по обьему кода и удобству программирования.

Вот, например, кусок кода, передающий в регистр UDR байты с некоторой выдержкой, выдержка делается за счет вращения бесконечного цикла:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
	.CSEG
	LDI R16,Low(RAMEND)	; Инициализация стека
	OUT SPL,R16		; Обязательно!!!
 
	LDI R16,High(RAMEND)
	OUT SPH,R16
 
	.equ	Byte 	= 50
	.equ 	Delay 	= 20
 
	LDI	R16,Byte	; Загрузили значение
Start:	OUT	UDR,R16		; Выдали его в порт
 
	LDI	R17,Delay	; Загрузили длительность задержки
M1:	DEC	R17		; Уменьшили на 1
	NOP			; Пустая операция
	BRNE	M1		; Длительность не равна 0? Переход если не 0
 
	OUT	UDR,R16		; Выдали значение в порт
 
	LDI	R17,Delay	; Аналогично
M2:	DEC	R17
	NOP
	BRNE	M2
 
	OUT	UDR,R16
 
	LDI	R17,Delay
M3:	DEC	R17
	NOP
	BRNE	M3
 
	RJMP	Start		; Зациклим программу

Сразу напрашивается повторяющийся участок кода вынести за скобки.

1
2
3
4
	LDI	R17,Delay
M2:	DEC	R17
	NOP
	BRNE	M2

Для этих целей есть группа команд перехода к подпрограмме CALL (ICALL, RCALL, CALL)
И команда возврата из подпрограммы RET
(далее…)

Read More »

AVR. Учебный Курс. Работа с памятью

Так, с работой ядра на предмет переходов и адресации разобрались. Пора обратить свой взор в другую область — память.

Ее тут два вида (EEPROM не в счет т.к. она вообщет переферия, а о ней потом):

  • RAM — оперативка
  • ROM — ПЗУ, она же flash, она же память программ

Так как архитектура у нас Гарвардская, то у оперативы своя адресация, а у флеша своя. В даташите можно увидеть структуру адресации ОЗУ.

Сразу обратите внимание на адреса! РОН и регистры периферии, а также ОЗУ находятся в одном адресном пространстве. Т.е. адреса с 0000 по 001F занимают наши регистры, дальше вплоть до адреса 005F идут ячейки ввода-вывода — порты. Через порты происходит конфигурирование всего, что есть на борту контроллера. И только потом, с адреса 0060 идет наше ОЗУ, которое мы можем использовать по назначению.

Причем обратите внимание, что у регистров I/O есть еще своя адресация — адресное пространство регистров ввода-вывода (от 00 до 3F), она указана на левой части рисунка. Блок IO/Register Эта адресация работает ТОЛЬКО в командах OUT и IN Из этого вытекает интересная особенность.
(далее…)

Read More »

AVR. Учебный курс. Простейшая программа.

Итак, прежде чем что то делать надо понять как вообще выполняется программа в контроллере, как работает ядро процессора. Для этого нам хватит AVR Studio и его эмулятора. Не очень интересно, может даже занудно, но если этот шаг пропустить, то дальнейшие действия будут как бег в темноте.

Поскольку в демоплате Pinboard используется процессор ATmega16, то рассматривать мы будем именно его. Впрочем, как я уже говорил, для других контроллеров AVR это также будет справедливо. Отличия, конечно, есть, но они не существенные.

Запускаем AVR Studio (далее просто студия) и в выскочившем мастере сразу же создаем проект:

Откроется окно:

Увеличить

Оно может выглядеть чуток не так. Дело в том, что интерфейс студии очень легко конфигурируется и перекраивается под себя. Так что можно перетащить панели как нам удобно. Что я и сделал.

Систему команд хорошо бы распечатать себе на листочке. Их там всего около 130, кратким списком (тип команды, что делает и какие операнды) занимает пару листов формата А4. Учить не надо, прочитать раз на десять, чтобы помнить знать что у нас есть. Даже я периодически подглядываю в систему команд, хотя пишу на ассемблере уже много лет.
Я же команды которые буду использовать буду описывать по мере появления.
(далее…)

Read More »

AVR. Учебный курс. Макроассемблер

Перед изучением системы команд микроконтроллера надо бы разобраться в инструментарии. Плох тот плотник который не знает свой топор. Основным инструментом у нас будет компилятор. У компилятора есть свой язык — макроассемблер, с помощью которого жизнь программиста упрощается в разы. Ведь гораздо проще писать и оперировать в голове командами типа MOV Counter,Default_Count вместо MOV R17,R16 и помнить что у нас R17 значит Counter, а R16 это Default_Count. Все подстановки с человеческого языка на машинный, а также многое другое делается средствами препроцессора компилятора. Его мы сейчас и рассмотрим.
(далее…)

Read More »

AVR Studio в Linux.

Печально, но факт, что Atmel штампует свое замечательное IDE только для семейства OS Windows. Поэтому пользователям Linux приходится по-всякому извращаться, чтобы заполучить себе на машину этот удобнейший инструмент разработчика. Существует два очевидных решения этой задачи. Первый — запускать студию в Windows, которая крутится на виртуальной машине (отдельную машину с Win не рассматриваем). Второй — запускать программу посредством Wine.

Первый способ хорош 100%-й совместимостью и полным отсутствием софтверных граблей. Железные же практически полностью висят на разработчиках виртуальных машин и обычно стремятся к нулю. Однако, виртуальная машина отжирает у хост-машины ценные системные ресурсы. Кроме того, стоит учесть, что налог на Windows не зависит от того насколько виртуальна машина, на которой бегает эта операционная система. Ну и окно-в-окне, особенно при неудачно реализованном механизме переключения между системами, удовольствия не доставляет. Если вас эти ограничения не смущают, это вполне себе вариант. В Википедии есть прекрасная сводная таблица виртуальных машин, которая может вам пригодиться.

Способ запуска программ (любых) посредством Wine — вполне себе самодостаточен. Стоит помнить, что проект постоянно развивается. Сегодняшний Wine не чета тому, который мне довелось пощупать при первом знакомстве. Сайт проекта: http://www.winehq.org/. Этот вариант распишу подробно.
(далее…)

Read More »

AVR Studio ликбез

Установка.
Сначала надо с сайта atmel.com скачать последнюю версию AVR Studio. Весит она что то около 30 метров. Можно и старые релизы использовать, не преступно, но там может не оказаться новых микроконтроллеров. AVR Studio, как и многие буржуйские программы, крайне хреново понимает русские имена и длинные пути. Поэтому ставь ее по максимально простому пути, что то вроде C:\AVR\ А сами проекты тоже держи как можно ближе к корню, У меня, например, это D:\Work\AVR — никаких имен длинней 8 символов и, конечно же, никаких русских символов. Привет родимый DOS, как говорится.

Да, если планируешь (если не планируешь, то все равно скачай и поставь, не помешает) писать на Си, то рекомендую скачать GCC aka WinAVR и установить ее ДО студии, туда же, поближе к корню. Тогда студия подхватит ее в качестве своего плагина. Если поставить после, то тоже, может быть подхватит, но возможны проблемы.
(далее…)

Read More »

AVR. Учебный курс. Архитектура.

Итак, камрад, прежде чем ты начнешь работать с контроллером, то неплохо бы тебе узнать что у него внутри.
Поэтому дам тебе краткий ликбез по архитектуре контроллера AVR.

Основой любого микроконтроллера является вычислительное ядро. Во всех моделях AVR оно практически одинаковое и это большой плюс. Именно единство архитектуры обеспечивает легкую переносимость кода.

Итак, что же у нас в основе микроконтроллера, взгляни на диаграмму:

Ядро состоит, в первую очередь, из памяти программ (Flash Programm Memory) и Арифметико-логического устройства (ALU), блока управления (на диаграмме не показан) и программного счетчик (Program Counter). Также есть тактовый генератор, задающий импульсы относительно которых работают блоки микроконтроллера. Тактовый генератор можно сравнить с маятником и собачкой в будильнике: маятник туда сюда, собачка тикает по одному зубчику — шестеренки крутятся. Встала собачка — встал весь будильник.

При старте микроконтроллера значение программного счетчика равно 0000 — это адрес первой команды в нашей flash ROM. Микроконтроллер хватает оттуда два байта (код команды и ее аргументы) и отдает на выполнение в декодер команд (Instruction Decoder).

А дальнейшая судьба зависит от команды. Если это просто команда работы с какими-либо действиями, то они будут выполнены, а на следующем такте значение программного счетчика будет увеличено и из следующей пары ячеек памяти будут взяты еще два байта команды и также отправлены на выполнение.
(далее…)

Read More »

C vs Assembler

Если ты впервые столкнулся с микроконтроллерами, то наверняка у тебя стал выбор на чем писать.

На Си или на Ассемблере. Выбор не прост, не зря программисты однокристальщики раскололись на два непримиримых лагеря. Одни с пеной у рта доказывают, что те кто пишут на Си лохи изнеженные, а настоящий брутальный кодер должен воспринимать только ассемблер. Другие же, усераясь, доказывают, что на ассемблере разве что лампочками помигать можно, а какой либо серьезный проект делать на низком уровне невозможно.

Но, истинна, как всегда, находится посредине. Каждый уважающий себя программер должен знать ассемблер, а вот писать должен на том, что более подходит под масштаб задачи. Особенно это касается микроконтроллеров. (далее…)

Read More »