Tag Archives: Программирование

Организация древовидного меню

Почти для всех проектов на микроконтроллере с экранчиком требуется система меню. Для каких-то проектов одноуровневое, для других — многоуровневое древовидное. Памяти, как обычно, мало, поэтому хочется запихнуть все во флэш.

Попутно, из проекта в проект, развивалась своя псевдоОС — таймеры, события, диспетчеры.
Я ее полностью писал на си, оптимизацией и вылизыванием еще не занимался.

Перебирая разные системы, наткнулся на MicroMenu:

Попробуем разобрать ее на части и прикрутить к системе.
(далее…)

Read More »

AVR. Учебный Курс. Кусочно-линейная аппроксимация

Часто бывает так, что приходится обрабатывать жутко нелинейные величины, задаваемые каким-нибудь извращенным законом. Простейший пример — датчики расстояния SHARP GP2D12. Только поглядите на его характеристику:

Сам черт ногу сломит, а ведь нам бы неплохо иметь выход в человеческих величинах, ну или, хотя бы, линейно зависящие от расстояния. Что делать?

Вариантов тут, на самом деле, всего два. Первый очень быстрый, но жадный до памяти ПЗУ — табличный.
То есть мы просто берем и эту кривулину расписываем в памяти. Например, у нас с 8ми разрядного АЦП идет значение напряжения от 0 до 256, а мы на каждое значение создаем в памяти значение расстояния. Тогда с АЦП сразу гоним в индекс массива, где эти значения хранятся и получаем расстояние:

L=Curve[ADCH];

Недостаток один — прожорливость до памяти, растущая в геометрической прогрессии с ростом разрядности АЦП.

Вариант второй — написать функцию, переводящую одну величину в другую. (далее…)

Read More »

Пример виртуальной машины

Как то раз я описывал концепцию создания языка программирования для устройства. Который бы позволил запихать сложнейший алгоритм или последовательность действий в виде компактного скрипта.

Простой пример для чего это нужно — фрезерный станок с ЧПУ. И надо на нем выточить голову Сократа из цельного куска металла. Задача, на самом деле, не шибко сложная.

Но попробуйте написать прошивку, двигающую резцом, в виде классического конечного автомата — двигающую резцом в зависимости от условий или состояний. Да вы сдохнете раньше чем это сможете сделать.

Другое дело если разбить программу на элементарные операции, вроде «Резец вверх», «резец вниз», «шаг на n мм», а прошивке скормить последовательность этих микроопераций в виде байт-кода или текстового скрипта. Как все серьезно упрощается. Да и попутно можно нашинковать Платона с Гераклом, было бы желание, да образец для копирования.

Т.е. у нас появился свой язык устройства, полностью отвязанный от аппаратной реализации и оперирующий только органами устройства. И вот тут, главное, не впасть в высокоуровневую прелесть и не начать изобретать универсального интерпретируемого языка аля JAVA для микроконтроллеров. В условиях ограниченных ресурсов это полный бред.

Наоборот, этот язык нужно максимально упрощать за счет усложнения процедур машины, затачивая их строго под текущую задачу, а не делая нечто универсальное. Тогда можно выжать максимум из контроллера.

Ну, хватит воды, приведу пример того, что у меня получилось за вечерок курения в код. Код рабочий, но я там ничего не оптимизировал. Так, накидал чтоб работало, до ума доведете сами. Сделано все на базе ядра диспетчера. Я его уже описывал, поэтому работу его функций пояснять не буду
(далее…)

Read More »

Виртуальная машина и байт код

Часто требуется делать большие последовательности сложных операций — например полетное задание для робота. Да, можно запихать все это дело в основную программу, но вдруг что то пойдет не так как надо и алгоритм надо будет переделать — придется переделывать всю программу.

Тут на помощь придет виртуальная машина. Суть в чем — в памяти контроллера, в основную программу, занесены основные процедуры управления устройством. Если это робот, то это могут быть такие простые команды как «вперед», «назад», «повернуть» и так далее.

Дальше мы увязываем это все в таблицу переходов, где у каждой команды будет номер-смещение.

Потом нам нужен обработчик скриптов, который бы брал откуда нибудь, нашу последовательность действий — скрипт и преобразовывал это в вызовы реальных кусков кода -микрооперации.
Обработчик скриптов может быть той же самой задачей диспетчера, запущенной фоном. А откуда он будет брать данные неважно. Их вполне можно засасывать по usart или тащить из EEPROM памяти. А можно загнать на IIC память и получится сменный картридж :)
(далее…)

Read More »

AVR. Учебный курс. Конечный автомат

Каждый кто пытался разбираться с конечными автоматами наверняка натыкался на всякие замудреные графы, какие то графики. Многие посчитав это слишком сложным плюнули и забили. А Зря!

С простейшим конечным автоматом каждый из нас сталкивался с самого детства — это механическая авторучка. Объект с единственной функцией «Нажатие кнопки», но в зависимости от очередности результат разный. Стержень то прячется, то вылазит.

Так и в нашем случае — конечный автомат это функция которая запоминает свое состояние и при следующем вызове делает свое черное дело исходя из прошлого опыта. Простой пример — мигалка (псевдокод):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
; Глобальные переменные
u08 Blink_State;
 
void Blink(void)
{
if (Blink_State == 1)
	{
	Led_On();
	Blink_State = 0;
	Return;
	}
if (Blink_State == 0)
	{
	Led_Off();
	Blink_State = 1;
	Return;
	}
}

Вызывая эту функцию подряд мы заставим диодик менять свое состояние при каждом вызове.
(далее…)

Read More »

AVR. Учебный курс. Архитектура Программ. Часть 3

Приоритетный диспетчер.
Одной из проблем простого диспетчера является то, что все задачи имеют равный приоритет. С одной стороны, это просто и удобно. С другой — какое-либо важное событие можно прошляпить, пока там конвейер перещёлкает все задачи…

Проблему решает введение приоритетов.
В простейшем случае, можно ввести два приоритета — высокий и низкий. Разница между ними будет лишь в том с какой стороны очереди они будут засовываться на конвейер. Высокоприоритетные пихаются сразу в начало, низкоприоритетные с конца.
Разумеется, тут надо следить за тем, чтобы высокоприоритетные задачи не забивали конвейер, блокируя низкоприоритетные. Никакой защиты от этого нет, только думать головой.

Если нужна высокоуровневая система приоритетов, то можно очередь задач превратить в двумерный массив, где вторым этажом будет идти приоритет задачи. Правда при этом увеличиться время обработки конвейера — ведь надо будет сперва прочесать всю очередь в поисках наибольшего элемента. Но тут можно напридумывать кучу оптимизаций. Например, сортировать очередь при постановке задачи на конвейер, либо завести TOP list приоритетов, занося туда значения приоритетов. Тогда диспетчер, обрабатывая очередь, сразу будет искать нужный элемент, ориентируясь по TOP листу. Но вот так, на вскидку, я не берусь сказать какой из приемов будет эффективней/компактней/быстрей.
(далее…)

Read More »

AVR. Учебный Курс. Архитектура Программ Часть 2

Диспетчер
Данная организация программы требует чуть большего количества кода чем флаговый автомат (Хотя это еще как посмотреть. С увеличением числа задач служебный код динамического диспетчра не увеличивается, а вот флаговый автомат разрастается за счет большего числа флагов и проверок этих флагов, плюс быстродейтсвие снижается, чего нет в диспетчере) , но зато лишена ряда недостатков.

Во первых тут очередь выполнения задач не жестко заданная, а динамическая, конвеерного типа. То есть у нас есть в памяти массив из указателей на задачи-функции. Диспетчер берет указатель и, если он не указывает на Idle, осуществлет переход по этому адресу. Предварительно удалив его из очереди и подкинув очередь.

Заброс указателей-задач в очередь осуществляется другими задачами и прерываниями, а также программными таймерами. Собственно, принцип передачи управления от задачи к задаче похож на флаговый автомат — работаем через посредника. Только у нас тут отстутствуют проверки флагов, а переход делается диспетчером. За счет этого увеличение числа задач не сказывается на увеличении размера управляющей структуры.

Благодаря такой системе управляющую структуру можно вынести в отдельную библиотеку, сварганить к ней конфиг и таскать за собой ее туда сюда. Очень удобно.

А теперь подробно распишу тот диспетчер который стоит в 90% моих проектов на Си.
(далее…)

Read More »

AVR. Учебный курс. Делаем АЦП из Аналогового компаратора

Так сложилось, что основной МК с которым я работаю постоянно и на котором делаю подавляющее большинство задач это ATTiny2313 — он популярен, а, главное, это самый дешевый контроллер из всей линейки AVR с числом ног более 8. Я их брал числом около трех сотен за 18, чтоль, рублей штучка. Но вот западло — у него нет АЦП. Совсем нет. А тут он понадобился — нужно замерить сигнал с датчика. Засада. Не переходить же из-за такой фигни на более фаршированную ATTiny26 — она и стоит дороже и фиг где купишь у нас, да и что тогда делать с той прорвой ATTiny2313 что уже закуплена? Пораскинул мозгами…

А почему бы не сварганить АЦП последовательного сравнения? Конечно, быстродействие и точность будет не фонтан, зато, не меняя тип МК и всего с двумя копеечными деталями дополнительного обвеса, я получу полноценный, хоть и тормозной, 8ми разрядный АЦП, вполне удовлетворяющий моим скромным запросам! (далее…)

Read More »

AVR. Учебный Курс. Виртуальные порты

Глядя на то, как раскиданы порой ножки портов по корпусу контроллеров, у меня возникают большое подозрение, что разводчик кристалла дунул что то сильно забористое. Когда вперемешку идут выводы разных портов, да еще почти в рандомном порядке… Когда к этим портам вешаем что-либо разнобойное, то пофигу. А если надо подцепиться на прямую линейку шины данных, вроде того же LCD дисплея? Вот тут и начинается круголяние дорожек по плате. А если плата фаршированная донельзя? Тут приходится вводить перемычки, дополнительные слои и извращаться как только можно. Короче, та еще проблема.

Я решаю ее виртуальными портами. То есть завожу в системе переменную каждому биту которой привязываю какую-либо ножку. Поскольку все выводы независимы я могу компоновать виртуальный порт в любом порядке и из любых линий. Чертовски удобно. Впрочем, за удобство приходится платить — обработка такого порта требует несколько десятков команд. Но когда кристалл не забит под завязку, то можно позволить себе немного пошиковать во имя удобства.

Итак. Подключаем куда-нибудь в область процедур блок кода виртуального порта. (далее…)

Read More »

Робот на контроллере PIC от SWG. Часть 2

Предварительная версия схемы
Предварительная версия схемы
Тем временем, SWG продолжает совершенствовать своего робота. Структурно его конструкции похожа на моего робота — тоже раздельные специализированные контроллеры. Недавно он прислал мне схему контроллера датчиков/ИК буфферов. Короче глаза и прочие сенсоры. А также наброски кода для управления всем этим добром. Респект!

Хы, надо сказать я несколько отстаю в разработке :) Он уже за датчики взялся, а у меня пока только ходовая отлаживается… ничо ничо, вот щас с заказами разберусь и закажу себе УЗ сонары :)))) А там еще посмотрим кто первый в космос полетит :)

SWG:
Оперативную связь с ходовым контроллером планирую с использованием в обоих контроллерах линий портов B0, B1, с задействованием внешнего прерывания по B0. Кроме того, у контроллера буферов будет также выход на межмодульную шину I2C, для связи с центральным процессором, а иногда и с ходовым контроллером, (для несрочных операций, типа уточнения местоположения препятствия, диагностики исправности датчиков и т.д.) На всякий случай вывожу на разьем также неиспользуемые линии портов, в т.ч. и USART (на всякий случай, в первую очередь для отладки). В качестве датчиков столкновений пока нарисовал микрики, но ставить скорее всего буду все же оптопары, что лучше будет отрабатывать толчки с разных направлений, но потребует дополнительных резисторов для CD подсветки, и желательно управление ей. Свободные линии портов для этого еще есть. На всякий случай (для отладки, а также наглядности работы буфера, и облегчения настройки локаторов, на A4 хочу поставить сигнальный светодиод. (при подачи тока на него он светится разными цветами, переключая их по очереди).

Бонусом в архиве идет доработанная программа ходового контроллера:

  • Исходник на Pascal
  • Cкомпилированные им ассемблерный листинг и HEX — код, а также
  • Дизассемблерный из HEX-кода листинг. Получен программой из комплекта IC-Prog, которой я прошиваю PIC16F876).

Описание ходовой части. Обратите внимание на комменты к посту, в них автором расписана большая часть подробностей и идей по дальнейшему развитию.

Read More »

AVR. Учебный курс. Подключение к AVR LCD дисплея HD44780

Сегодня разменял четверть века
Сегодня разменял четверть века!
Так случилось, что прикупил я тут себе поприколу LCD дисплейчик две строки по восемь символов. Валялся он в ящике валялся, да чегото поперло меня и решил я его заюзать, попутно вкурив в его работу. О том как подключить к AVR LCD дисплей я вам сейчас и поведаю.

Для начала оговорюсь сразу, что речь тут пойдет о LCD индикаторах на контроллере HD44780, который стал промышленным стандартом де-факто на рынке цифро-буквенных дисплеев. Продается везде где только можно, стоит недорого (8х2 мне обошелся порядка 150 рублей), а также под него написана куча кода. Я же, как обычно, решил изобрести велосипед и сварганить свою собственную тру-библиотеку для работы с этим типом индикаторов. Разумеется на ассемблере, а на чем же еще? ;)

(далее…)

Read More »

AVR. Учебный курс. Процедура сканирования клавиатуры

Итак, клавиатуру я сделал и написал процедуру сканирующую клавиатурную матрицу 4х4 кнопки. Пора бы рассказать как организовать опрос такой клавы. Напомню, что клава представляет из себя строки, висящие на портах и столбцы, которые сканируются другим портом. Код написан для контроллера ATMega8535, но благодаря тому, что все там указано в виде макросов его можно быстро портировать под любой другой контроллер класса Mega, а также под большую часть современных Tiny. Хотя в случае с Tiny может быть некоторый затык ввиду неполного набора команд у них. Придется чуток дорабатывать напильником.

(далее…)

Read More »

AVR. Учебный Курс. Выдача данных с АЦП на UART. Мультиплексирование каналов АЦП

Несколько постов назад я заикнулся о том, что выдам на гора программу-пример для работы с АЦП. Пора за базар отвечать :) Делать мы будем простенький цифровой вольтметр с замашками осциллографа. Точнее осциллографом это можно назвать с большой натяжкой, скорей самописец. Так, побаловаться.

Задача:
Получить по очереди напряжение с трех каналов АЦП и отправить его по последовательному порту в комп. По запросу с компа показвыать напряжение на каждом из измеряемых каналов. В компе полученный поток байт представить в виде графика.

Теоретическую часть я уже разобрал, осталось поставить эксперимент в реальном железе.

Собираем схему на демоплате Pinboard.
Нам нужны три разных напряжения. Их проще всего получить с переменных резисторов, включенных потенциометрами. При этом средняя точка переменного резистора подключается к каналу АЦП, а крайние точки к +5 и GND питания. При этом при вращении рукоятки резистора напряжение на его средней точке будет меняться от нуля до +5 вольт. Резистор, подключенный к каналу ADC0 уже так включен и никаких лишних движений не требует. А вот два других надо будет подключить. На видео и на фотках хорошо видно что и куда идет.

Поглядеть крупнее

(далее…)

Read More »

Матричная клавиатура

Допустим нам надо подавать команды нашему девайсу. Проще всего это делать посредством обычных кнопок, повешенных на порт. Но одно дело когда кнопок две три, и другое когда их штук двадцать. Не убивать же ради этого двадцать выводов контроллера. Решение проблемы есть — матрицирование. То есть кнопки группируются в ряды и столбцы, а полученная матрица последовательно опрашивается микроконтроллером, что позволяет резко снизить количество нужных выводов ценой усложнения алгоритма опроса.

Клавиатурная матрица.
Я ее нарисовал тебе на первой картинке. Как видишь, там есть строки и столбцы. Кружочками обозначены кнопки. Включены они так, что при нажатии кнопка замыкает строку на столбец.

Считывающий порт включается в режиме Pull-up входа, то есть вход с подтягивающими резисторами. Если контроллер это не поддерживает, то эти резисторы надо повесить снаружи.

Сканирующий порт работает в режиме выхода, он подключен к столбцам. Столбцы должны быть подтянуты резисторами к питанию. Впрочем, если используется полноценный Push-Pull то подтяжка не нужна — выход сам поднимет ногу на нужный уровень.

(далее…)

Read More »

AVR. Учебный курс. Использование ШИМ

Вот уже несколько раз я ругался странным словом ШИМ. Пора бы внести ясность и разьяснить что же это такое. Вообще, я уже расписывал этот режим работы, но все же повторюсь в рамках своего курса.
 

Вкратце, Широтно Импульсная Модуляция (в буржуйской нотации этот режим зовется PWMPulse Width Modulation) это способ задания аналогового сигнала цифровым методом, то есть из цифрового выхода, дающего только нули и единицы получить какие то плавно меняющиеся величины. Звучит как бред, но тем не менее работает. А суть в чем:
 

Представь себе тяжеленный маховик который ты можешь вращать двигателем. Причем двигатель ты можешь либо включить, либо выключить. Если включить его постоянно, то маховик раскрутится до максимального значения и так и будет крутиться. Если выключить, то остановится за счет сил трения.
 

А вот если двигатель включать на десять секунд каждую минуту, то маховик раскрутится, но далеко не на полную скорость — большая инерция сгладит рывки от включающегося двигателя, а сопротивление от трения не даст ему крутится бесконечно долго.
 

Чем больше продолжительность включения двигателя в минуту, тем быстрей будет крутится маховик.
При ШИМ мы гоним на выход сигнал состоящий из высоких и низких уровней (применимо к нашей аналогии — включаем и выключаем двигатель), то есть нулей и единицы. А затем это все пропускается через интегрирующую цепочку (в аналогии — маховик). В результате интегрирования на выходе будет величина напряжения, равная площади под импульсами.
 

Меня скважность (отношение длительности периода к длительности импульса) можно плавно менять эту площадь, а значит и напряжение на выходе. (далее…)

Read More »

AVR. Учебный курс. Таймеры

С счетчиком итераций главного цикла мы разобрались и выяснили, что для точных временных отсчетов он не годится совершенно — выдержка плавает, да и считать ее сложно. Что делать?

Очевидно, что нужен какой то внешний счетчик, который тикал бы независимо от работы процессора, а процессор мог в любой момент посмотреть что в нем такое натикало. Либо чтобы счетчик выдавал события по переполнению или опустошению — флажок поднимал или прерывание генерил. А проц это прочухает и обработает.

И такой счетчик есть, даже не один — это периферийные таймеры. В AVR их может быть несколько штук да еще с разной разрядностью. В ATmega16 три, в ATmega128 четыре. А в новых МК серии AVR может даже еще больше, не узнавал.

Причем таймер может быть не просто тупым счетчиком, таймер является одним из самых навороченных (в плане альтернативных функций) периферийных девайсов.

Что умееют таймеры

  • Тикать с разной скоростью, подсчитывая время
  • Считать входящие извне импульсы (режим счетчика)
  • Тикать от внешнего кварца на 32768гц
  • Генерировать несколько видов ШИМ сигнала
  • Выдавать прерывания (по полудесятку разных событий) и устанавливать флаги

Разные таймеры имеют разную функциональность и разную разрядность. Это подробней смотреть в даташите.
(далее…)

Read More »

AVR. Учебный курс. Операционная система. Пример.

Отлично, с теорией работы ОС ознакомил. Устанавливать научил, осталось научить использовать весь этот конвеерно таймерный шухер. Чем я сейчас и займусь. Сразу берем быка за рога и формулируем учебно-боевую программу.
Тестовое задание:
Пусть у нас будет ATMega8, с несколькими кнопками. АЦП и подключеним к компу через UART. На меге будет три светодиода.

  • Девайс должен при включении начинать мигать зеленым диодом, мол работаю.
  • При этом раз в секунду сканировать показания АЦП и если показания ниже порога — Моргать красным диодом.
  • По сигналу с UARТ с целью защиты от ошибок сделать по байту ‘R’ установку флага готовности, а потом, в течении 10ms если не придет байт ‘A’ сбросить флаг готовности и игнорировать все входящие байты кроме ‘R’. Если ‘A’ придет в течении 10мс после ‘R’, то отправить в UART ответ и зажечь белый диод на 1 секунду.

Вот так вот, не сильно сложно. Но мне просто лень делать что либо сложней, а для тестовой задачи сгодится. (далее…)

Read More »

AVR. Учебный курс. Скелет программы

При написании прошивки надо очень внимательно подходить к процессу организации архитектуры будущей программы. Программа должна быть быстрой, не допускать задержек главного цикла и легко расширяться. Оптимально использовать аппаратные ресурсы и стараться выжать максимум возможного из имеющихся ресурсов.

Вообще, архитектура программ это отдельная тема и ближе к концу курса, в его Сишной части я подробней рассказываю о разных типах организации прошивки. Можешь забежать вперед и поглядеть, что да как.

В ассемблерной же части, я расскажу о одном из самых простых вариантов — флаговом автомате, а позже, когда ты уже будешь вовсю ориентироваться в моем коде, дам пример на основе конвейерного диспетчера, с подробным описанием его работы.

Суперцикл
Все программы на микроконтроллерах обычно зацикленные. Т.е. у нас есть какой то главный цикл, который вращается непрерывно.

Структура же программы при этом следующая:

  • Макросы и макроопредения
  • Сегмент ОЗУ
  • Точка входа — ORG 0000
  • Таблица векторов — и вектора, ведущие в секцию обработчиков прерываний
  • Обработчики прерываний — тела обработчиков, возврат отсюда только по RETI
  • Инициализация памяти — а вот уже отсюда начинается активная часть программы
  • Инициализация стека
  • Инициализация внутренней периферии — программирование и запуск в работу всяких таймеров, интерфейсов, выставление портов ввода-вывода в нужные уровни. Разрешение прерываний.
  • Инициализация внешней периферии — инициализация дисплеев, внешней памяти, разных аппаратных примочек, что подключены к микроконтроллеру извне.
  • Запуск фоновых процессов — процессы работающие непрерывно, вне зависимости от условий. Такие как сканирование клавиатуры, обновление экрана и так далее.
  • Главный цикл — тут уже идет вся управляющая логика программы.
  • Сегмент ЕЕПРОМ

(далее…)

Read More »

AVR. Учебный курс. Стартовая инициализация

Инициализация памяти
Мало кто подозревает о том, что при включении в оперативке далеко не всегда все байты равны 0xFF. Они могут, но не обязаны. Равно как и регистры РОН не всегда равны нулю при запуске. Обычно да, все обнулено, но я несколько раз сталкивался со случаями когда после перезапуска и/или включения-выключения питания, микроконтроллер начинал творить не пойми что. Особнно часто возникает когда питание выключаешь, а потом, спустя некоторое время, пара минут, не больше, включаешь. А всему виной остаточные значения в регистрах.

Итак, возьмите себе за правило после каждого включения, в разделе инициализации, еще даже до инициализации стека, делать зануление памяти и очистку всех регистров. Разумеется делается это все в цикле. Вот примерный вариант кода:

1
2
3
4
5
6
7
8
9
10
11
12
RAM_Flush:	LDI	ZL,Low(SRAM_START)	; Адрес начала ОЗУ в индекс
		LDI	ZH,High(SRAM_START)
		CLR	R16			; Очищаем R16
Flush:		ST 	Z+,R16			; Сохраняем 0 в ячейку памяти
		CPI	ZH,High(RAMEND+1)	; Достигли конца оперативки?
		BRNE	Flush			; Нет? Крутимся дальше!
 
		CPI	ZL,Low(RAMEND+1)	; А младший байт достиг конца?
		BRNE	Flush
 
		CLR	ZL			; Очищаем индекс
		CLR	ZH

Поскольку адрес оперативки у нас двубайтный, то мы вначале смотрим, чтобы старший байт совпал с концом, а потом добиваем оставшиеся 255 байт в младшем байте адреса.
Далее убиваем все регистры от первого до последнего. Все, контроллер готов к работе.

1
2
3
4
5
		LDI	ZL, 30		; Адрес самого старшего регистра	
		CLR	ZH		; А тут у нас будет ноль
		DEC	ZL		; Уменьшая адрес
		ST	Z, ZH		; Записываем в регистр 0
		BRNE	PC-2		; Пока не перебрали все не успокоились

За процедурку зануления регистров спасибо Testicq

Либо значения сразу же инициализируются нужными величинами. Но, обычно, я от нуля всегда пляшу. Поэтому зануляю все.

З.Ы.
Кстати, о оперативке. Нашел я недавно планку оперативной памяти на 1килобайт, древнюю как говно мамонта, еще на ферромагнитных кольцах.

Read More »

AVR. Учебный курс. Флаги и условные переходы

Есть в AVR (да и, пожалуй, во всех остальных процессорах) особый регистр SREG. О нем я несколько раз упоминал в прошлых статьях, но не вдавался в подробности. Чтож, пришло время рассказать, что же это же SREG такой и зачем он нужен.

SREG это регистр состояния ядра. Он так называется Status Register. В этом регистре находится независимых битов — флажков. Которые могут быть либо 1 либо 0, в зависимости от выполненных в прошлом операций.

И вот по тому какие флаги стоят, можно понять что произошло с процессором и что нам дальше делать.

Например, если флаг Z (Zero) выставлен в 1, значит в ходе вычисления предыдущей математической операции в результате образовался ноль.

А если выставлен флаг С (Carry — заем, перенос), то мы из меньшего числа отняли большее, или же прибавили такое число, что результат стал больше 255.

А теперь подробней по каждому флагу.
(далее…)

Read More »