Tag Archives: Транзистор

Б. Ю. Семенов «Силовая электроника для любителей и профессионалов»

Автор:		Б. Ю. Семенов
Название: 	Силовая электроника для любителей и 
		профессионалов
Издательство: 	Солон

Давненько я не выкладывал хороших книжек… Исправлюсь.

Нашел тут недавно замечательный труд по силовой электронике. Очень добротно расписан расчет и проектирование импульсных блоков питания. Повышающих, понижающих, инвертирующих. Досконально разобран расчет сердечников, дросселей, выбор диодов и ключей. Рассказано про особенности работы биполярных, полевых и IGBT транзисторов. Разобраны примеры серийных изделий.

Причем, что несказанно радует, книга написана не в виде сухого справочника, а живым человеческим языком. С примерами из жизни, обьясненями на пальцах в особо мутных местах. Много картинок, графиков. Все сказанное подтверждается тут же формулами расчетов. Подробно разьясняются всяческие грабли и неприятности которые могут поджидать при расчете силовых схем. В общем, книжка отличная просто. Давно такого не стречал.

З.Ы.
Уже давно вышла второе издание этой книги, расширенное и дополненное. Можно брать, достойная покупка.

Read More »

Перебаскин А.В. Бахметьев А.А. Маркировка электронных компонентов

Автор:		Перебаскин А.В. Бахметьев А.А. 
Название: 	Маркировка электронных компонентов
Издательство: 	Додэка

Хороший цветной справочник по маркировке современных компонетов. Особенно полезен будет начинающим, так как в начале идет подробнейший ликбез по базовым кодам на резисторах, конденсаторах. Все эти цветовые полоски и коды. Также есть справочник по SMD кодам с подробным описанием детали. Впрочем, однозначного ответа SMD код не дает, можно лишь резко сузить круг «подозреваемых», а потом, проведя разведку платы вычислить какя это деталь уже конкретно. Также в справочнике есть габаритные размеры разных корпусов, преимущественно россыпухи — всяки там SOT, DO и прочая мелюзга.

Read More »

Управление мощной нагрузкой постоянного тока. Часть 3.

Кроме транзисторов и сборок Дарлингтона есть еще один хороший способ рулить мощной постоянной нагрузкой — полевые МОП транзисторы.
Полевой транзистор работает подобно обычному транзистору — слабым сигналом на затворе управляем мощным потоком через канал. Но, в отличии от биполярных транзисторов, тут управление идет не током, а напряжением.

МОП (по буржуйски MOSFET) расшифровывается как Метал-Оксид-Полупроводник из этого сокращения становится понятна структура этого транзистора.

Если на пальцах, то в нем есть полупроводниковый канал который служит как бы одной обкладкой конденсатора и вторая обкладка — металлический электрод, расположенный через тонкий слой оксида кремния, который является диэлектриком. Когда на затвор подают напряжение, то этот конденсатор заряжается, а электрическое поле затвора подтягивает к каналу заряды, в результате чего в канале возникают подвижные заряды, способные образовать электрический ток и сопротивление сток — исток резко падает. Чем выше напряжение, тем больше зарядов и ниже сопротивление, в итоге, сопротивление может снизиться до мизерных значений — сотые доли ома, а если поднимать напряжение дальше, то произойдет пробой слоя оксида и транзистору хана.
(далее…)

Read More »

Управление мощной нагрузкой постоянного тока. Часть 2

Когда на раскачку нагрузки мощности одного транзистора не хватает, то применяют составной транзистор (транзистор Дарлингтона). Тут суть в том, что один транзистор открывает другой. А вместе они работают как единый транзистор с коэффициентом усиления по току равным произведению коэффициентов первого и второго транзов.

Если взять, например, транзистор MJE3055T у него максимальный ток 10А, а коэффициент усиления всего около 50, соответственно, чтобы он открылся полностью, ему надо вкачать в базу ток около двухста миллиампер. Обычный вывод МК столько не потянет, а если влючить между ними транзистор послабже (какой-нибудь BC337), способный протащить эти 200мА, то запросто. Но это так, чтобы знал. Вдруг придется городить управление из подручного хлама — пригодится.

На практике обычно используются готовые транзисторные сборки. Внешне от обычного транзистора ничем не отличается. Такой же корпус, такие же три ножки. Вот только мощи в нем больно дофига, а управляющий ток микроскопический :) В прайсах обычно не заморачиваются и пишут просто — транзистор Дарлигнтона или составной транзистор.
(далее…)

Read More »

Трансивер Radiocrafts RC1240

В поисках идеального трансивера я надыбал пару RC1240. Дорогие, падлы, по две тыщи штука. Намутил, пора приступать к жестоким экспериментам.

Итак, что нам обещают разработчики?

  • Дальность связи аж до 4х километров в идеальных условиях.
  • Многоканальный
  • Скорость передачи данных 4.800 кбит/с, полудуплексный режим.
  • Адресация на уровне протокола
  • 128 байтный буффер
  • Коррекция ошибок
  • Питание от 3 до 5 вольт

В общем, неслабый фарш. Хотя, за такие деньги это нормально. Немного потупив в мануалы я приступил к сборке.

Несколько дней назад меня предупредили, что эти радиомодули ОЧЕНЬ БОЯТСЯ статики. Чтож, кто предупрежден, тот вооружен. Перед работой обработал одежду и стул антистатиком (обычный бытовой, продается в хозмаге), а также зачистил на батарее отопления контактную площадку к которой прикладывался перед каждым взятием модуля в руки.
(далее…)

Read More »

Управление мощной нагрузкой постоянного тока. Часть 1

BS-115C

О какой нагрузке идет речь? Да о любой — релюшки, лампочки, соленоиды, двигатели, сразу несколько светодиодов или сверхмощный силовой светодиод-прожектор. Короче, все что потребляет больше 15мА и/или требует напряжения питания больше 5 вольт.

Вот взять, например, реле. Пусть это будет BS-115C. Ток обмотки порядка 80мА, напряжение обмотки 12 вольт. Максимальное напряжение контактов 250В и 10А.

Подключение реле к микроконтроллеру это задача которая возникала практически у каждого. Одна проблема — микроконтроллер не может обеспечить мощность необходимую для нормальной работы катушки. Максимальный ток который может пропустить через себя выход контроллера редко превышает 20мА и это еще считается круто — мощный выход. Обычно не более 10мА. Да напряжение у нас тут не выше 5 вольт, а релюшке требуется целых 12. Бывают, конечно, реле и на пять вольт, но тока жрут больше раза в два. В общем, куда реле не целуй — везде жопа. Что делать?

Первое что приходит на ум — поставить транзистор. Верное решение — транзистор можно подобрать на сотни миллиампер, а то и на амперы. Если не хватает одного транзистора, то их можно включать каскадами, когда слабый открывает более сильный.

Поскольку у нас принято, что 1 это включено, а 0 выключено (это логично, хотя и противоречит моей давней привычке, пришедшей еще с архитектуры AT89C51), то 1 у нас будет подавать питание, а 0 снимать нагрузку. Возьмем биполярный транзистор. Реле требуется 80мА, поэтому ищем транзистор с коллекторным током более 80мА. В импортных даташитах этот параметр называется Ic, в наших Iк. Первое что пришло на ум — КТ315 — шедевральный совковый транзистор который применялся практически везде :) Оранжевенький такой. Стоит не более одного рубля. Также прокатит КТ3107 с любым буквенным индексом или импортный BC546 (а также BC547, BC548, BC549). У транзистора, в первую очередь, надо определить назначение выводов. (далее…)

Read More »

Гордон Мак-Комб «Радиоэлектроника для чайников»

Автор:		Гордон Мак Комб
Название: 	Радиоэлектроника для чайников
Издательство: 	Диалектика

Если взять книги Борисова и выкинуть из них всю теоретическую начинку, оставив только практическую составляющую на уровне тезисов, вроде «ток идет от плюса к минусу» или «диод пропускае ток только в одном направлении», добавить немного байды про странный микроконтроллер из другого мира (не, реально, я не знаю где они отрыли эту фиговину, никак происки Parallaxa), снабдить это картинками и рядом практических советов (весьма, дельных, порой). Что получиться? Правильно! Очередная книга из серии «Для чайников». Научиться по ней чему либо толком нельзя, но зато она, как и любая книга из этой серии, помогает чайнику развить просто кипучую деятельность, позволяя получить результат прямо здесь и сейчас, пусть даже не понимая толком как это работает. Но ведь тоже хорошо, заставляет немного поверить в свои силы и тогда можно выкурить что посерьезней, например, того же Рудольфа Свореня. Так что если вы даже не догадываетесь за какой конец брать паяльник, то найдете там немало интересных моментов.

Read More »

Основы на пальцах. Часть 3

Диод
Так работает диод
Так работает диод

  Это такая хитрая фиговина, пропускающая ток только в одну сторону. Его можно сравнить с ниппелем. Применяется, например, в выпрямителях, когда из переменного тока делают постоянный. Или когда надо отделить обратное напряжение от прямого. Погляди в схему программатора (там где был пример с делителем). Видишь стоят диоды, как думаешь, зачем? А все просто. У микроконтроллера логические уровни это 0 и 5 вольт, а у СОМ порта единица это минус 12 вольт, а ноль плюс 12 вольт. Вот диод и отрезает этот минус 12, образуя 0 вольт. А поскольку у диода в прямом направлении проводимость не идеальная (она вообще зависит от приложенного прямого напряжения, чем оно больше, тем лучше диод проводит ток), то на его сопротивлении упадет примерно 0.5-0.7 вольта, остаток, будучи поделенным резисторами надвое, окажется примерно 5.5 вольт, что не выходит за пределы нормы контроллера.
Выводы диода называют анодом и катодом. Ток течет от анода к катоду. Запомнить где какой вывод очень просто: на условном обозначнеии стрелочка и палочка со стороны катода как бы рисуют букву К вот, смотри —К|—. К= Катод! А на детали катод обозначается полоской или точкой.

  Есть еще один интересный тип диода – стабилитрон. Его я юзал в одной из прошлых статей. Особенностью его является то, что в прямом направлении он работает как обычный диод, а вот в обратном его срывает на каком либо напряжении, например на 3.3 вольта. Подобно ограничительному клапану парового котла, открывающемуся при превышении давления и стравливающему излишки пара. Стабилитроны используют когда хотят получить напряжение заданной величины, вне зависимости от входных напряжений. Это может быть, например, опорная величина, относительно которой происходит сравнение входного сигнала. Им можно обрезать входящий сигнал до нужной величины или используют его как защиту. В своих схемах я часто ставлю на питание контроллера стабилитрон на 5.5 вольт, чтобы в случае чего, если напряжение резко скакнет, этот стабилитрон стравил через себя излишки. Также есть такой зверь как супрессор. Тот же стабилитрон, только куда более мощный и часто двунаправленный. Используется для защиты по питанию.

(далее…)

Read More »