Category Archives: Начинающим

Разведение питания

При конструировании электронных устройств есть ряд особенностей которые явно не видны на схеме и не обнаруживаются в симуляторах, но оказывают активнейшее влияние на работу схемы, провоцирующее плавающие глюки и неполадки.

Хорошим источником приколов может служить земляная шина, будучи проложена без учета ряда особенностей.

Вообще, грамотная разводка это та еще черная магия. Толковых подробных мануалов по сему предмету я не встречал, а все что знаю — продукт собственных умозаключений и обрывки толковых мыслей с разных форумов. В общем, если есть что добавить — добавляйте. (далее…)

Read More »

ZigBee модуль Microchip-MRF24J40MA

Встала необходимость осваивать радиоканал. Стояла задача — передача небольших объемов информации с большого количества устройств. Начал рассматривать варианты.

  • Блютус (на него изначально упал взгляд у заказчика). Не подошел — малое расстояние, и не более 7 устройств в сети.
  • Вай-фай. Не более 32 устройств в сети. Не подошел.
  • Разнообразные трансиверы — удлинители ком-порта. В основном предназначены для работы в режиме точка-точка.
  • ZigBee-образные устройства. Стандарт IEEE-802.15.4. Приглянулись сразу. Вот про них и рассказ.

Для целей ознакомления остановился на готовом модуле от Microchip – MRF24J40MA. На алиэкспрессе продается, тут. У атмелов есть похожий чип AT86RF220 и интегрированное решение ATMEGA128RFA1. Облизнулся на последний, но в пределах досягаемости не было, под заказ — долго. Но обязательно потом возьму, погоняю.

Знакомство
Итак, встречайте героя. Модуль MRF24J40MA на чипе MRF24J40.

MRF24J40MA

(далее…)

Read More »

Датчик Холла

Есть такой интересный эффект — если через квадратную проводящую пластину гнать постоянный ток, а саму пластину пронизать магнитным полем, чтобы линии индукции проходили через ее сечение, то летящие по пластине электроны отклоняются силой Лоуренса.

А раз так, то с одного края электронов будет больше чем с другой. Возникает разность потенциалов, то есть напряжение. И чем больше ток и сильней поле, тем большая разность будет. Это и есть эффект Холла.

Дальше дело за малым — берем источник стабильного тока, чем стабильней тем лучше, ведь от стабильности зависит точность показаний. Прогоняем постоянный ток по пластине, ловим да усиливаем разность потенциалов до осязаемых величин. В результате получаем отличную вещь — датчик магнитного поля, он же датчик Холла.
(далее…)

Read More »

Ключ от всех дверей. Эмулятор ключей от домофона.

Ты потерял ключи от домофона и не можешь сделать дубликат. Хочешь ходить в гости к подруге, но у тебя нет ключей от её подъезда. Либо просто тебе нужно подосрать твоему недругу, но ты не можешь попасть к нему в дом, тогда эта статья для тебя.

Пара слов о принципе работы…
Бытует мнение, что в таблетках от домофона находится магнит, и он открывает дверь. Нет, это не так. Таблетка представляет собой ПЗУ, с жёстко зашитым в ней ключом. Называется это ПЗУ — Touch Memory, марки DS1990A. DS1990A — это и есть марка домофонных ключей. Общается с домофоном по шине one-wire (однопроводной интерфейс). Эта шина разработана фирмой Dallas и позволяет общаться двум устройствам всего по одному проводу. Если устройство пассивное (как в нашем случае), то оно ещё и передаёт ему питание по этому проводу. Надо ещё заметить, что необходим ещё общий провод (чтобы цепь замыкалась), но, как правило, все земли устройств подключённых к этой шине соединены воедино. В ключе находится конденсатор на 60 пикофарад, который обеспечивает кратковременное питание ключа на момент ответа. Но ведущее устройство должно постоянно (не реже чем в раз 120 микросекунд) генерировать сигнал единицы, для зарядки этого конденсатора, чтобы ПЗУ в таблетке продолжало питаться.

Потроха таблетки. Как видно, никаких магнитов там нет!
(далее…)

Read More »

Конденсаторное питание

Что то часто меня стали спрашивать как подключить микроконтроллер или какую низковольтную схему напрямую в 220 не используя трансформатор. Желание вполне очевидное — трансформатор, пусть даже и импульсный, весьма громоздок. И запихать его, например, в схему управления люстрой размещенной прям в выключателе не получится при всем желании. Разве что нишу в стене выдолбить, но это же не наш метод!

Тем не менее простое и очень компактное решение есть — это делитель на конденсаторе.

Правда конденсаторные блоки питания не имеют развязки от сети, поэтому если вдруг в нем что нибудь перегорит, или пойдет не так, то он запросто может долбануть тебя током, или сжечь твою квартиру, ну а комп угробить это вообще за милое дело, в общем технику безопасности тут надо чтить как никогда — она расписана в конце статьи. В общем, если я тебя не убедил что бестрансформаторные блоки питания это зло — то сам себе злой Буратино, я тут не причем. Ну ладно, ближе к теме.

Помните обычный резистивный делитель?

Казалось бы, в чем проблема, выбрал нужные номиналы и получил искомое напряжение. Потом выпрямил и Profit. Но не все так просто — такой делитель может и сможет дать нужное напряжение, но вот совершенно не даст нужный ток. Т.к. сопротивления сильно велики. А если сопротивления пропорционально уменьшать, то через них насквозь пойдет большой ток, что при напряжении в 220 вольт даст очень большие тепловые потери — резисторы будут греть как печка и в итоге либо выйдут из строя, либо пожар устроят.

Все меняется если один из резисторов заменить на конденсатор. Суть в чем — как вы помните из статьи про конденсаторы, напряжение и ток на конденсаторе не совпадают по фазе. Т.е. когда напряжение в максимуме — ток минимален, и наоборот.

Так как у нас напряжение переменное, то конденсатор будет постоянно разряжаться и заряжаться, а особенность разряда-заряда конденсатора в том, что когда у него максимальный ток (в момент заряда), то минимальное напряжение и наборот. Когда он уже зарядился и напруга на нем максимальная, то ток равен нулю. Соответственно, при таком раскладе, мощность тепловых потерь, выделяемая на конденсаторе (P=U*I) будет минимальной. Т.е. он даже не вспотеет. (далее…)

Read More »

Пайка. Видео урок. Часть 3. Паяем SSOP паяльником.

А теперь, с похмелья, еще одно видео:

Для любопытных:
Используется паяльная станция ZD-929C
Плата закреплена в тисах
Снимается все на фотокамеру Sony H50 с прибамбасом из линзы от платодержателя и адским штативом из настенного подвеса для телевизора.

Read More »

Демонтаж микросхем. Видео урок. Часть 1

В связи с организацией поточного производства нет времени на написание статей, поэтому пока буду кормить вас видеоуроками, благо они не требуют много времени на создание :) На этот раз будет демонтаж микросхем в кустарно-полевых условиях дедовскими методами:

З.Ы.
Надо еще перезаписать видео про отсос и сделать видео про демонтаж феном. А совсем скоро будет про запайку FT232RL. Попробую ее и паяльником и феном запаять.

А завтра денек будет вообще веселый… ээххх!!!

Read More »

Пайка. Видео урок. Часть 2. Работа термофеном.

Продлжаем развлекаться с макросьемкой. На этот раз будем орудовать феном :)
Плата, правда, фабричная с маской и лужением, но на самодельной, если ее хорошо залудить и смазать правильным флюсом то будет не хуже.

З.Ы.
Думаю многих заинтересует вопрос, а что это за зеленая платка?
(далее…)

Read More »

Пайка. Видео урок. Часть 1

Скреативил тут адскую установку для макровидео. Т.к. для сьемок макро моим фотоаппаратом приходилось тыкать чуть ли не обьективом в плату, что во первых не дает подлезть туда же паяльником, а во вторых можно и нежную оптику брызгами припоя и флюса загадить. Пришлось изобретать :) В итоге, прикорячил линзу от плато держателя — она позволила держать фотик нааамного дальше от платы, а все это дело прикрутил деталями от того же платодержателя к кронштейну для подвески телевизоров. Сам кронштейн закрепил не на стену, а прифигачил болтами к столу, получилась вполне удобная конструкция :) Сбоку подвесил еще небольшой вентилятор, чтобы дым сдувать. Но забыл ограничить ему мощность, поэтому дул он так, что у меня припой мгновенно остывал, пришлось прикрутить мощность.

Ну, а результат всего действа можете наблюдать ниже:
Пайка выводных компонетов

(далее…)

Read More »

Русская инструкция на робоконструктор RoboPica

Помните я обещал русский мануал к RoboPica? Так вот, я не успел и конструктор смели с прилавков быстрей чем я договорился выцыганить книжку на сканирование. Однако Bschepan, один из довольных обладателей этой игрушки, сделал доброе дело и выложил скан упиханый в DejaVu.

Русская инструкция на робоконструктор RoboPica

Рекомендую всем кто начинает раскуривать контроллеры PIC. Там все довольно подробно расписано на примере компилятора MicroC от Микроэлектроники.

Read More »

Преобразователь USB-UART на FTDI FT232RL

Хоть у меня и есть COM порты в компе, но последнее время мне их стало нехватать. Поэтому решил прикупить себе микросхемку конвертер и собрать переходник с USB на UART.

(далее…)

Read More »

Технологическая мелочевка. Штырьевые разъемы

Я не переношу макетные платы, потому что там легко что нибудь перепутать и ошибиться. А я человек рассеяный и часто косячу там где можно накосячить :) Поэтому предпочитаю под любую мелочь делать печатку. По времени выходит также, зато надежно.
А еще я люблю делать микроблоки, думаю вы не раз и не два видели их на фотках в статьях.

Раскуривая очередную незнакомую мне микруху я делаю под нее отладочный микроблок со всей необходимой обвязкой и выведеными наружу интерфейсами и питаловом. В итоге, постепенно собирается целый конструктор из таких вот гарантированно работающих кирпичиков. И в один прекрасный момент понимаешь, что на создание аппаратной части прототипа нового девайса из этих кусочков уходит буквально считанные минуты. Но я хотел рассказать не об этом, а о способах соединения блоков. (далее…)

Read More »

Часы реального времени PCF8583

Делал я тут один коммерческий девайсик и требовалось там вести лог событий. А конкретно фиксировать управляющие команды пользователя, а также время и дату, чтобы если оператор где накосячит его можно было взять за задницу. Вот такой вот электронный цербер.
Задача несложная, но для ее реализации нужен был способ замерять время, причем делать это независимо, с сохранением результатов даже если питалово вырубили. Данные можно хранить во флеше, а что делать с временем?

Я решил поставить микросхему часов реального времени PCF8583 от NXP. Стоит она рублей 80, дороговато, конечно. Можно было дешевле выкрутиться, на одном лишь асинхронном таймере AVR, но при цене девайса в жутки тыщи на таких спичках не экономят, а тут готовое промышленное решение :) Сам таймер PCF8583 представляет собой восьминогую тараканину, которой из обвяза нужен только кварц на 32768Гц, батарейка резервного питания на 3.3 вольта и собственно все.
Общается она с микроконтроллером по протоколу I2C который я недавно разобрал. (далее…)

Read More »

Измерительные цепи

При работе автоматической системой нам в подавляющем большинстве случаев будут нужны будут датчики, способные замерить разные величины. И хоть сейчас получают распространение цифровые датчики, вроде термометра DS1820, все же аналоговых датчиков намного больше. Постараюсь кратко описать как со всем этим хозяйством работать.

Выход с датчика может быть трех основных видов (если кто вспомнит еще, добавьте в комментах)
Напряженческий, токовый и резистивный. Как понятно из названия, тут выходная датчик превращает колебания измеренной величины в колебания напряжения, тока или сопротивления, осталось только эти величины привести к виду удобному для запихивания в АЦП микроконтроллера.
(далее…)

Read More »

Управление мощной нагрузкой постоянного тока. Часть 3.

Кроме транзисторов и сборок Дарлингтона есть еще один хороший способ рулить мощной постоянной нагрузкой — полевые МОП транзисторы.
Полевой транзистор работает подобно обычному транзистору — слабым сигналом на затворе управляем мощным потоком через канал. Но, в отличии от биполярных транзисторов, тут управление идет не током, а напряжением.

МОП (по буржуйски MOSFET) расшифровывается как Метал-Оксид-Полупроводник из этого сокращения становится понятна структура этого транзистора.

Если на пальцах, то в нем есть полупроводниковый канал который служит как бы одной обкладкой конденсатора и вторая обкладка — металлический электрод, расположенный через тонкий слой оксида кремния, который является диэлектриком. Когда на затвор подают напряжение, то этот конденсатор заряжается, а электрическое поле затвора подтягивает к каналу заряды, в результате чего в канале возникают подвижные заряды, способные образовать электрический ток и сопротивление сток — исток резко падает. Чем выше напряжение, тем больше зарядов и ниже сопротивление, в итоге, сопротивление может снизиться до мизерных значений — сотые доли ома, а если поднимать напряжение дальше, то произойдет пробой слоя оксида и транзистору хана.
(далее…)

Read More »

Фотодачик. Часть 2. Модуляция.

О простейших фотодетекторах я уже писал, но их применение для передачи информации или сигналов на расстояние весьма ограничено.

Предположим нам надо поймать световой сигнал, причем в любых условиях. И неважно будет это в полной темноте или с яркой внешней засветкой поймать и все тут. Но возникает проблема — как определить когда у нас есть сигнал, а когда фотодетектор засветило помехой?

Очевидный ответ — сравнение двух состояний. Когда полезный сигнал есть, и когда его нет. Для того, чтобы знать что полезный сигнал есть у него должен быть какой нибудь признак, например частота. (далее…)

Read More »

Фотодатчик. Часть 1

Наверняка многим захочется присобачить к AVR фотодетектор, чтобы отслеживать хотя бы наличие или отсутствие света. Это полезно как для роботостроителей, так и для тех кто делает всякую автоматику. Итак, кратко опишу какие бывают фотодетекторы.

Фоторезистор
ИМХО вымирающий вид. Последний раз я его видел еще в детстве. Обычно представляет собой такой металический кругляк со стеклянным окошком, в котором видна этакая сероватая зигзагообразная дорожка. При освещении его сопротивление падает, правда незначительно, раза в три четыре.

Фототранзистор
Последнее время я на них натыкаюсь постоянно, неиссякаемый источник фототранзисторов — пятидюймовые дисководы. Последний раз я, по цене грязи, надыбал на радио барахолке штук 5 платок от дисковертов, там светотранзисторы стоят напротив дырок контроля записи и вращения дискеты. Еще сдвоенный фототранзистор (а может и фотодиод, как повезет) стоит в обычной шариковой мышке.
Выглядит как обычный светодиод, только корпус прозрачный. Впрочем, светодиоды тоже такие же бывают так что перепутать кто из них кто раз плюнуть. Но это не беда, партизан легко вычисляется обычным мультиметром. Достаточно включить омметр между его эмитером и коллектором (базы у него нет) и посветить на него, как его сопротивление рухнет просто катастрофически — с десятков килоом до считанных ом. Тот который у меня в детекторе вращения шестерен в роботе меняет свое сопротивление с 100кОм до 30 Ом. Работает фототранзистор подобно обычному — держит ток, но в качестве управляющего воздействия тут не ток базы, а световой поток.

Фотодиод
Внешне ничем не отличается от фототранзистора или обычного светодиода в прозрачном корпусе. Также порой встречаются древние фотодиоды в металлических корпусах. Обычно это совковые девайсы, марки ФД-чето там. Такой металлический цилиндрик с окошком в торце и торчащими из задницы проводками.

В отличии от фототранзистора, может работать в двух разных режимах. В фотогальваническом и фотодиодном.
В первом, фотогальваническом, варианте фотодиод ведет себя как солнечная батарейка, то есть посветил на него — на выводах возникло слабенькое напряжение. Его можно усилить и применить =). Но куда проще работать в фотодиодном режиме. Тут мы подаем на фотодиод обратное напряжение. Поскольку он хоть и фото, но диод, то в обратную сторону напряжение не пойдет, а значит его сопротивление будет близко к обрыву, а вот если его засветить, то диод начнет очень сильно подтравливать и сопротивление его будет резко падать. Причем резко, на пару порядков, как у фототранзистора.
(далее…)

Read More »

Интерфейсная шина IIC (I2C)

Один из моих самых любимых интерфейсов. Разработан в компании Philips и право на его использование стоит денег, но все на это дружно положили и пользуют в свое удовольствие, называя только по другому. В Atmel его зовут TWI, но от этого ничего не меняется :) Обычно при разборе IIC во всех книгах ограничиваются примером с EEPROM на этом и ограничиваются. Да еще юзают софтверный Master. Не дождетесь, у меня будет подробный разбор работы этой шины как в режиме Master так и Slave, да еще на аппаратных блоках с полным выполнением всей структуры конечного автомата протокола. Но об этом после, а сейчас основы.

Физический уровень.
Данные передаются по двум проводам — провод данных и провод тактов. Есть ведущий(master) и ведомый (slave), такты генерирует master, ведомый лишь поддакивает при приеме байта. Всего на одной двупроводной шине может быть до 127 устройств. Схема подключения — монтажное И
(далее…)

Read More »